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Flow past a flat plate at low Reynolds numbers 

By E. JANSSEN 
General Electric Company, San Jose, California 

(Received 26 July 1957) 

SUMMARY 
The flow past a flat plate at Reynolds numbers in the range 

0.1 to 10.0 is investigated by an analogue method. The solution 
gives the stream function and the vorticity in the flow field 
surrounding the plate. From these are obtained the local coefficient 
of friction, the pressure distribution along the plate, and the total 
drag coefficient. The drag coefficient approaches the analytical 
values of Haaser (1950) and of Tomotika & Aoi (1953) as the 
Reynolds number decreases toward 0.1. The drag coefficient 
approaches the Blasius solution as the Reynolds number increases. 
At Reynolds number 10.0 the drag coefficient is still above the 
Blasius value, but is below the value obtained experimentally by 
Janour (1951). The difference from the experimental result is 
attributed for the most part to truncation error. 

INTRODUCTION 
The Blasius solution of the Prandtl boundary layer equation, for the 

case of flow past a thin flat plate, is valid only for a boundary layer whose 
thickness is very small relative to distance from the leading edge. The 
results of the Blasius analysis are therefore invalid at low Reynolds numbers. 
Kuo (1953) has investigated the flow past a flat plate for Reynolds numbers 
as low as 10 by a perturbation method. Tomotika & Aoi (1953), Imai 
(1954), and others have investigated the flow past a flat plate for Reynolds 
numbers up to about 1.0, by linearizing the flow equation in accordance 
with the Oseen approximation. Haaser (1950) has computed the skin 
friction distribution for this configuration, using Carrier’s (1953) modifica- 
tion of the Oseen linearization for Reynolds numbers up to 5.0. The 
object of this paper is to investigate, by an analogue method, the flow past 
a finite flat plate at Reynolds numbers in the range 0.1 to 10.0, using the 
exact non-linear formulation of the problem, and to compare the results 
with those of the foregoing and with experiment. 

The equation governing the two-dimensional motion of an incom- 
pressible fluid with constant viscosity is 

where 5 is the scalar vorticity, given by 
v.vg = v v y  (1) 

av au < = - - -  
a* aY. 

F.M. Y 
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The defining equations of a stream function I+!J are 

alt alt 
aY ' a x *  v = -  u =  - - 

In Cartesian coordinates, these equations may be written 

v2* = 5. ( 5 )  
Equations (3) satisfy the continuity equation which, therefore, does not 
need to be expressed explicitly. 

These 
particular equations have been solved for the case of flow past a circular 
cylinder with zero circulation at Reynolds numbers in the range 1 to 1000, 
by numerical techniques (Thom 1933; Kawaguti 1953; and Allen & 
Southwell 1955). The procedure outlined in this paper gives a method of 
solution by means of two resistance networks which is applicable to an 
extensive class of problems in viscous flow. It will be applied here 
specifically to the case of flow past a flat plate. 

Equations (4) and ( 5 )  have the form of the Poisson equation. 

Transformation of equations 
It is convenient at the outset to render the equation dimensionless, and 

to consider transformation from the physical plane to some other plane. 
Let the physical plane be the z-plane, and let the velocity of the undisturbed 
flow be parallel to the x-axis. Then 

Here the prime notation signifies dimensional quantities. The hydro- 
dynamic equations, as well as the expression for z, are rendered dimensionless. 
by making the following substitutions : 

x' = XI + iy' = r'&e. 

where r6 is some characteristic length, e.g. a cylinder radius, uk, is the 
undisturbed velocity parallel to the x-axis, v' is the kinematic viscosity 
and NR is the Reynolds number. 

The transformation t =f(z) can be employed to map the field on to the 

t = (+iq. (6). 
conformal, equations (4) and (5) become 

t-plane where 

If the transformation is 

and 1 v;* = - 5  
q2 ' 
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and q, the transformation modulus, is the ratio of a length in the t-plane 
to the corresponding length in the z-plane, and is a function of position, 
that is 

Solution of the Poisson equation by a network analogue 
The general form of the Poisson equation 

vz+ = f(% Y) (9) 

(101 

may be expressed approximately in the difference form 

where the field has been divided into square meshes of length a on a side 
(figure 1). fi0 is the value of the function in question at a particular mesh 
point, and dM is the average for the nearest four neighbouring mesh points. 

4 0  = 4 M  - $a2f(xo, Yo), 

I I l a  

t 
Figure 1. Representation of field by a net. 

Now consider a resistance network having a geometrically similar mesh 
pattern (figure 2), with resistances Rj between adjacent mesh points (nodes) 
as shown. In  addition to the current flowing through these resistors, 
current flows into each of the nodes from an external source. The sum of 
the currents flowing into a particular node must be zero from Kirchhoff's 
law of node currents: 

eo-ee, eo-e2 eo-e3 eo-e4 . 
3- - -10 = 0, 

R4 
+- +- 

R3 R, R,  
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where SRi is the deviation of t k j t h  resistor with respect to the first resistor. 
The analogy that exists between the function t$ of the system described by 
equation (10) and the voltage e of the network is apparent. If a scale factor K 
is chosen so that e = K+ at corresponding points, then i can be adjusted so 
that 

Note that when the resistor deviation is zero the first two terms on the right 
of equation (12), which are in fact error terms due to this deviation, drop 
out. By the method of this paper, however, it is not necessary that the 
resistor deviation be zero, as the current io itself is not measured, and the 
network resistor deviation contributes nothing to the computational error. 

I I / / I  
I I I 

---h- 

- - ' I  f - -,$Y;T--- 
I 

I / 

/ 

" / / I  
/ I  I -+-- 

/ I  
I 

/ 

Figure 2. Resistance network pattern geometrically similar to net of figure 1 .  

The Poisson equations whose solutions are desired are equations (7) 
and (8). The difference forms of these equations are, respectively, 

(0  = (N - $$B{(h - # d 5 2  - 54) - ($2- $44)(51- (3)) (13) 
and a2 

*o = *iw- - 50, 4q0 
where 

There is a network for each equation. The voltages at the boundaries 
of the two networks are fixed to correspond to the boundary conditions 
of the problem. Current must then be supplied to each anode in the 
+-network proportional (except for the resistor deviation terms of (12)) 
to 5 for that point, and to each node in the (-network proportional to 
{&- +3)((2- C4) - (&- +4)(51- C3)] for that point. To  accomplish this 
quantities, called the ' residuals ' in relaxation procedures, are defined by 

5, = *(el + 52 + 53 + 541, *M = &(A + $2 + h + *4). 



Flow past a flat plate at low Reynolds numbers 333 

for the #-net, and by 

for the 4-net. The current to each node in the +network is adjusted 
manually until 2tV goes to zero, and the current to each node in the (-network 
is adjusted manually until 9tC goes to zero. and 9, may be computed 
electronically by using components which change sign, add or multiply 
(the theory is clearly presented in a number of texts, for example see 
Korn & Korn (1952) or Soroka (1954)). A schematic diagram of the networks 
and associated voltage sources, current controls, etc., is shown in figure 3. 
One arrangement of electronic components for computing residuals is 
shown schematically in figure 4. 

wC = 45~-450-~NR{(~1'1-~)(52-54)-(~~'2#4)(51-53)} (16) 

BOUNDARY 
CONTROL 

NODE CURRENT 
CONTROL 

f-NETWO $-NETWORK 

SELECTOR SWITCH 

ELECTRONIC NULL 
COMPUTER INDICATOR 

Figure 3. Schematic diagram of analogue. 

The solution to equations (13) and (14) is obtained after a relaxation 
procedure involving the adjustment of the currents to each of the nodes in 
the two networks in several successive steps. This is the approximate 
solution to equations (7) and (8), the degree of approximation improving 
with the fineness of mesh. A mesh size should be used such that any 
decrease in the size will produce no change in the solution within the 
desired limits of accuracy. 

Boundary conditions (general) 
In  the case of a flat plate located at or near the origin in an otherwise 

uniform flow field, # is essentially at its uniform field value, and 1 is zero, 
far away from the origin. Thus, this part of the boundary, henceforth 
referred to as the outer boundary, is chosen far away and this may be taken 
care of by making the network quite large. It may also be handled by using 
a transformation which permits a reasonably small network to be used as 
was done in obtaining the results reported in this paper. 
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t,b will be known at every place on the boundary and 5 will be known at 
every place except where the boundary is solid (that is, along the flat plate). 
Consider a solid boundary which is parallel to the &axis (figure 5). The 

MULTIPLIERS 
n 

SELECT POT ACCOROHG TO NOOE. 
SET POTS AT $ 

OPERATIOWL AMPLFIEA 

NUMBERS BY RESISTORS 61VE 
RELATIVE VALUES. 1 

Figure 4. Assembly of electronic components for computing residuals. 

t +3  + 

Figure 5.  Solid boundary parallel to &axis. 

value of 5 at the point 0 on the boundary is desired. Points 1 and 3 are 
on the boundary and point 2 is a short distance inside the boundary at a 
position on a normal through point 0. The expression for 5 in terms of t,b 
follows from equation (8) : 

A difference form for equation (17) may be obtained by using a Taylor 
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The expression for the stream function series expansion about point 0. 
at point 2 is 

From equation (S), 

Along the solid boundary 4 is constant and u is zero. Hence, all derivatives 
of with respect to 5, and the first derivative of 4 with respect to y, are zero. 
$ J ~  is now given by 

Neglecting all terms past the second on the right (that is, all terms of order a3 
or higher), and rearranging, one obtains 

Thom (1933) and Allen & Southwell (1955) have used equation (19) 
.and their results check well with experiment. It was possible for them to 
decrease the mesh constant a in regions where (ag/an), was large, thus 
keeping the third (and following) term on the right of equation (18) small 
and presumably negligible. Woods (1954), on the other hand, takes the 
third term into account in the following manner. The Taylor series is 
again employed, this time to obtain an expression for the vorticity at 
point 2 : 

Rearrangement and multiplication by +a2 gives 

and substitution for the third term in (18) then gives 

Neglect of all terms in (20) of order a4 or higher, and rearrangement, 
finally gives 
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or, more generalIy, 

where I& is the vorticity at any points on the solid boundary, t,h8 is the stream 
function at that point, 5, is the vorticity at a point p inside the boundary 
at a distance m on a normal through s, and i,bp is the stream function at 
point p .  

Equation (21) is preferable to  (19) for use with networks unless the mesh 
constant has been reduced in regions of the flow field where the vorticity 
gradient is steep. Equation (21) was used in obtaining the results reported 
in this paper. 

Values of 5, for every point on the solid boundary are first assumed, 
then new values are determined after each relaxation of the two networks. 
If succeeding values of 5, are based on equation (21 b), that is, 

where the superscript in parentheses refers to the number of the step in 
the iteration, the process will diverge. To  effect convergence a plot of 
(5, + (q:/2qg)5,}(") 71s I),") may be prepared and the graph of equation (21 b) 
superposed. The intersection of the two curves will give the final value of 
{CS+ (q:/2q3gP}. A supplementary plot of 5r) TJS {CS+ (q;/2q35,)(") may 
assist in estimating the correct final value of 5,. 

Flow past a flat plate 
Consider the case of a finite flat plate (of infinitesimal thickness) in an 

infinite flow field, and parallel to the otherwise undisturbed velocity, with 
leading edge at ( - 1, 0) and trailing edge at ( + 1 ,  0). Let the trans- 
formation be 

for which the modulus is 
z = cosht, (22) 

(23) q = [sinh2 [ + sin2 7J-1'2. 
This transformation has the following features : 

( 1 )  the modulus is very small far away from the origin, thus permitting 

(2)  the modulus is very large in the region of the leading edge, thus 

Because the flow will be symmetrical only the half plane need be used. 
The transformation is illustrated in figure 6. 

the transformation plane to be relatively small ; 

literally magnifying the region of interest. 

The boundary conditions are : 

a* E = O ,  * = o ,  - - 0 ;  af- - 
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The solution obtained from the analogue represents + and 5 as functions 
of position in the flow field (including the solid boundary). The velocity 
is given by (3). The equation for the pressure is 

The shear stress is given by 
2 

rs = - - 5,. 
L y R  

2-PLANE 1 t-PLANIE 

lr t 
PLATE 

Figure 6. Transformation for a flat plate. 

The local coefficient of friction cr is equal numerically to twice the dimension- 
less shear stress of equation (25). Let the defining equation for the drag 
coefficient C, be 

where D' is the drag on both sides of the plate per unit span, and I' is the 
dimension of the plate parallel to the flow. Then C, is given by 

D' = C D  i l ' p ' ~ : ,  

Results and discussion 
Two networks were constructed, with outer boundary at tm = irr" and 

with mesh constant equal to +rj- (a transition to f r r  was effected beyond 
5 = in). The REAC of the Rand Corporation, Santa Monica, California, 
was made available to the author for the purpose of computing residuals, 
its components being connected as indicated in figure 4. Data obtained 
from the analogue in the form of potentials were readily converted to stream 
function and vorticity by the application of the appropriate scale factors. 

* Location of the oater boundary was based on a consideration of the distance 
from the plate at which the maximum vorticity in a laminar wake would have become 
small enough to neglect. 

f Considerations based on limiting the truncation error in 5 led to the value 
&T for the mesh constant. This was increased by a faaor of 5 for reasons of economy.. 
Any error present in the solution is presumed to be largely truncation error. 
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Solutions were obtained for Reynolds numbers 0.1, 1.0, and 10.0. The 
corresponding values of + and 5 are given in tables 1 and 2. The differenta- 
tion and integration involved in determining the pressure and drag coefficient 
were done numerically. 

The local coefficient of friction is plotted os x, for the three Reynolds 
numbers, in figure 7. cf as given by the Blasius solution is also plotted. The 
analogue solution approaches the Blasius solution as the Reynolds number 
increases. The influence of the trailing edge, significant at very low 
Reynolds numbers, may be seen distinctly in the analogue solution. The 
Blasius solution, of course, does not take the effect of the trailing edge 
into account. 

24 

16 

8 

P - P w  0 

- 8  

-16 

- 24 

X X 

Figure 7. Local friction coefficient u s  x. Figure 8. Pressure 2)s x. 

The pressure at the surface of the plate was found by first integrating the 
terms of (24) from the outer boundary to  the plate along the path = in -  
(and thereby determining the pressure at the mid-point of the plate), and 
then integrating along the surface of the plate (that is, along the path 8 = 0). 
The pressure is plotted os x, for the three Reynolds numbers, in figure 8. 
The value given by the Blasius solution is zero everywhere. It may again 
be noted that the analogue solution approaches the Blasius solution as the 
Reynolds number increases. 
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The drag coefficient C, is given by (26). One should know cf at every 
point along the x-axis from x = - 1 to x = + 1 in order to evaluate the 
integral. But the analogue gives values only from x = -0.924 to 
x = +O-924. The fact that cf is not known in the regions adjacent to the 
leading and trailing edges is a serious deficiency. However, some corre- 
lation is established between the solutions at the three Reynolds numbers 
by plotting cf vs the 'local' Reynolds numbers N R 2  and N R ~ - r )  in 

%r 

-0.21 
-0.28 
-0.57 

-0.38 
-0.50 
-1.00 

-0.48 
-0.61 
-1.21 

-0.51 
-0.62 
-1-16 

-0.46 
-0.51 
-0.81 

-0.34 
-0.35 
-0.41 

-0.19 
-0.18 
-0.14 

NR 9.r -- 
- 
- 
- 

~- 
-0.79 
-1.04 
-1.72 

~- 
- 
- 
- 

~~ 

-1.07 
-1.30 
-2.20 

~- 
- 
- 
- 

___- 

-0.71 
-0.70 
-0.79 ~- 
- 
- 
- 

-0.022 
-0.030 
-0.076 
-- 
-0.038 
-0.050 
-0420 

~~ 

-0-047 
-0.060 
-0.131 

-0.08 
-0.11 
-0.27 

-0.15 
-0.20 
-0.46 

-0.19 
-0.25 
-0.54 

-0.049 
-0.060 
-0.116 
-- 
-0.045 
-0*051 
-0-079 
~- 
-0.035 
-0.036 
-0.042 
-- 
-0.020 
-0.021 
-0.018 

-0.20 
-0.25 
-0.49 

-0.18 
-0.20 
-0.33 

-0.14 
-0.14 
-0.17 

-0.07 
-0.07 
-0.06 

rl rr 

0.1 
1 .o 

10.0 

0 
0 
0 

- 
- 
- 

-7.18 
-8.04 
- 8 a42 

- 
- 
- 

- 9-86 
-11.10 
-11.89 

0 
0 
0 

0 
0 
0 

- 

-2.57 
-3.21 
-3.89 

- 
- 
- 

- 17.94 
-17.94 
- 17.94 

- 
- 
- 

0 
0 
0 

- 3 -48 
-4.14 
- 5-39 

- 25 *36 
-25.37 
- 25-37 

0 
0 
0 

0 
0 
0 

0 
0 
0 

- 

- 6.63 
- 6.27 
-8.38 

- 
- 
- 

-2.31 
-2.20 
-3.64 

- 
- 
- 

-17.94 
-17.94 
- 17.94 

- 
- 
- 

Table 1. Stream function. 

figures 9 and 10 respectively. NBr is the local Reynolds number based 
.on distance from the leading edge and NR(I-s) is the local number based 
 on distance from the trailing edge. On the basis of these plots a straight 
line extrapolation (on logarithmic coordinates) is employed to obtain 
values of cf in the regions - 1 < x < - 0.924 and + 0.924 < x < + 1, 
%he slope of the straight line being taken as -0.577. 

C, is now given by 

cf dx- 1 cfsinv dy+ - cf dx. 
2 .  Bn 
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The first term on the right is the contribution of the 3.8% segment of the 
surface adjacent to the leading edge, the last term is the contribution of the 
3.8% segment adjacent to the trailing edge, and the middle term is the 
contribution of the 92.4% of the surface which lies between. Let these 

cDl 

7.09 
1.07 
0.28 

cDZ cD3 

30.6 6.76 
3.78 0.75 
0.79 0.07 

-- 

+77 

- 0.76 
- 1 '07 
- 2.05 

877 

-0.15 
-0.16 
+ 0-1 1 

-0.27 
-0.31 
+0.06 

( = O  

- 1 '99 
- 2.92 
- 7.75 

i" 
-0.34 
- 0.44 
- 0.21 

-0.44 
-0.56 
-0.40 

- 0.69 
- 0.95 
-1.94 

-0.18 
-0.16 

0 

-0.07 
- 0.02 
- 

- 0.97 
-1.38 
- 3 '68 

- 0.70 
- 0.89 
- 2.21 

- 0.60 
- 0.77 
-1.62 

-0.45 
-0.56 
-0.58 

-0.32 
-0.37 
- 0.04 

-0.33 

-0.17 
- 0.39 

-0.32 
-0.39 
-0.46 

-0.27 

-0.66 
-0.34 

- 
- 
- 

-0.11 
- 0.07 
- 

- 
- 
- 

- 0.09 
-0.14 

0 

-0.61 
- 0.74 
-1.53 

-0.56 
- 0.68 
-1.34 

- 0.45 

-0.72 

- 0.44 
-0.52 
-0.84 

- 0.42 

-0.85 

- 0.54 

-0.49 

-0.23 
- 0.25 

0 

- 
- 
- 

-0.19 
- 0.25 
- 0.80 

-0.66 
- 0.75 
-1.31 

- 0.90 
- 0.94 
- 1 *20 

-0.58 
-0.67 
-1.17 

- 0.65 
-0.72 
- 1 '05 

-0.70 
- 0.78 
-0.91 

-0.32 
-0.37 
-0.64 

-0.16 
- 0.20 
-0.58 

- 1 '82 
- 2.01 
- 1 -84 

Table 2. Vorticity. 

I I I 

C D  

44.45 
5 -60 
1.14 

NR 

0.1 
1 -0 

10.0 

Table 3. Drag coefficient. 

contributions to C,  be denoted respectively by CDl, CD3, and CDe, SO that 
CD = CD, + CD, + CD,. The drag coefficient, together with its three parts, 
is given in table 3. 

According to this analysis the contribution of the leading edge segment 
increases from 16% to 25 yo of the total drag, the contribution' of the trailing 
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edge segment decreases from 15% to 6y0, and the contribution of the 
surface between stays nearly constant at 68% or 69% as the Reynolds 
number is increased from 0.1 to 10.0. This is in contrast to the Blasius 

solution according to which the contribution of the same leading edge 
segment is constant at 13.75% of the total drag and the contribution of the 
trailing edge segment is constant at 1.35% of the total drag, for all Reynolds 
numbers. 



342 E. Janssen 

The drag data of table 3 are compared with the experimental values 
reported by Janour (1951) in figure 11. Drag data reported by Sherman 
(1952) are also shown although these were obtained under compressible 
flow conditions at Mach numbers of approximately 0.2 and 0.6. Also shown 
are the drag coefficient for the Blasius solution and the drag coefficients 
as determined by Tomotika & Aoi (1953) and Haaser (1950), the latter two 
being based respectively on the Oseen approximation and on Carrier’s 
(1953) modification of the Oseen approximation. The drag coefficient as 

0. I I .o 10 100 1000 
Ne 

Figure 11. Drag coefficient vs Reynolds number. 

determined from the analogue solution approaches the Blasius solution 
as the Reynolds number increases, and approaches the solutions of Haaser 
and of Tomotika & Aoi as the Reynolds number decreases. In  the range 
where comparison with experiment is possible, the drag coefficient lies 
below the values of Janour and Sherman. This difference from experiment 
is believed to be due chiefly to truncation error. 

The author wishes to thank the Rand Corporation, Santa Monica, 
California, for making available to him their analogue computing facilities. 
The solutions reported here were all obtained at Rand. The resistance 
networks and associated switching equipment were made possible by the 
University of California Research Grant No. 11 15. 
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